我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:2019年正版资料大全 > 丹尼格兰杰 >

那进行完格兰杰检验之后一个变量是另一个变量的格兰杰原因能说明

归档日期:10-19       文本归类:丹尼格兰杰      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部如果说A是B的格兰杰原因,则说明A的变化是引起B变化的原因之一。我们可以解释,在一定程度上,A对B的影响是主动的。但是这个并不能说明A一变化B就一定会变化,因为我们所有的格兰杰原因都是在大量统计的基础上得出来的。所以只能说在一个比较长期的累积的情况下,A的变化会带动B的变化。

  用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(xi,yi)(i=1,2,…m),其中各xi是彼此不同的 。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型 ,式中c=(c1,c2,…cn)是一些待定参数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在各点的残差(或离差)ek=yk-f(xk,c)的加权平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线。有许多求解拟合曲线的成功方法,对于线性模型一般通过建立和求解方程组来确定参数,从而求得拟合曲线。至于非线性模型,则要借助求解非线性方程组或用最优化方法求得所需参数才能得到拟合曲线,有时称之为非线性最小二乘拟合。

  曲线拟合:贝塞尔曲线与路径转化时的误差。值越大,误差越大;值越小,越精确。

  因此,Granger(1980)提出了因果关系的定义,他的定义是建立在完整信息集以及发生时间先后顺序基础上的。至于判断准则,也在逐步发展变化:

  最初是根据分布函数(条件分布)判断,注意Ωn是到n期为止宇宙中的所有信息,Yn为到n期为止所有的Yt (t=1…n),Xn+1为第n+1期X的取值,Ωn-Yn为除Y之外的所有信息。

  后来认为宇宙信息集是不可能找到的,于是退而求其次,找一个可获取的信息集J来替代Ω:

  再后来,大家又认为验证分布函数是否相等实在是太复杂,于是再次退而求其次,只是验证期望是否相等(这种叫做均值因果性,上面用分布函数验证的因果关系叫全面因果性):

  最后一种方法已经接近我们最常用的格兰杰因果检验方法,统计上通常用残差平方和来表示预测误差,于是常常用X和Y建立回归方程,通过假设检验的方法(F检验)检验Y的系数是否为零。

  可以看出,我们所使用的Granger因果检验与其最初的定义已经偏离甚远,削减了很多条件(并且由回归分析方法和F检验的使用我们可以知道还增强了若干条件),这很可能会导致虚假的因果关系。因此,在使用这种方法时,务必检查前提条件,使其尽量能够满足。此外,统计方法并非万能的,评判一个对象,往往需要多种角度的观察。正所谓“兼听则明,偏听则暗”。诚然真相永远只有一个,但是也要靠科学的探索方法。

本文链接:http://islandsog.com/dannigelanjie/852.html