我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:2019年正版资料大全 > 德尔塔中心 >

二元一次方程求根公式?

归档日期:06-29       文本归类:德尔塔中心      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0.

  法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。 由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

  如果一个方程含有两个未知数,并且所含未知项都为一次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。如一次函数中的平行,。二元一次方程的一般形式:ax+by+c=0其中a、b不为零。这就是二元一次方程的通俗定义。二元一次方程组的通俗定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。专业定义:一个含有两个未知数,并且未知项的指数都是1的整式方程,叫二元一次方程(linear equation of two unknowns)。

  二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。

  一般解法,消元:将方程组中的未知数个数由多化少,逐一解决. 二元一次方程组(y=1 x=1)

  加减消元法:将方程组中的两个等式用相加或者是相减的方法,抵消其中一个未知数,从而达到消元的目的,将方程组中的未知数个数由多化少,逐一解决.

  代入消元法:通过“代入”消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫做代入消元法,简称代入法。一般不会用到。

  (1)代入消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中

  的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代入法.

  (2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.

  含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。

  适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。每个二元一次方程都有无数对方程的解,由二元一次方程组成的二元一次方程组才可能有唯一解,二元一次方程组常用加减消元法或代入消元法转换为一元一次方程进行求解。

  将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法。

  (1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形式;

  (2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;

  (4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;

  知道合伙人教育行家采纳数:72778获赞数:315403中交三航局江苏分公司工程师向TA提问展开全部x+y=0

  请采纳正确答案,你们只提问,不采纳正确答案,回答都没有劲!谢谢管理员推荐采纳!!

本文链接:http://islandsog.com/deertazhongxin/345.html